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Generalized synchronization of chaos is a type of cooperative behavior in directionally coupled oscillators
that is characterized by existence of stable and persistent functional dependence of response trajectories from
the chaotic trajectory of driving oscillator. In many practical cases this function is nondifferentiable and has a
very complex shape. The generalized synchrony in such cases seems to be undetectable, and only the cases in
which a differentiable synchronization function exists are considered to make sense in practice. We show that
this viewpoint is not always correct and the nondifferentiable generalized synchrony can be revealed in many
practical cases. Conditions for detection of generalized synchrony are derived analytically, and illustrated
numerically with a simple example of nondifferentiable generalized synchronization.
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[. INTRODUCTION intervals of the driving trajectory preceding the current state.
The paper is organized as follows. In Sec. Il we discuss the

Synchronization plays an important role both for under-idea of such detectability and evaluate the improvement us-
standing of cooperative behavior in natural networks of osing numerical analysis of a simple example. Section IlI de-
cillators [1] and for various engineering applicatiofs3].  Vvelops a theoretical argument explaining the mechanism be-
Recently, a significant interest in understanding and givind!ind the detectability improvement. Section IV discusses
theoretical description of synchronization regimes, among0ssible effects caused by small additive noise in the data.
the oscillators with chaotic behavior, is perceived; see, fosummary of the results and possible applications are dis-
example, recent books and reviej¥s-6]. Various types of ~cussed in the Conclusion.
chaos synchrony, whose description may require different

theoretical frameworks, were found in natural systems and Il. NUMERICAL EXAMPLE
specified. These types of synchrony include identical syn- ] . -
chronization [7-9], generalized synchronizatiofl0—13, To illustrate the idea of detectability enhancement, we
and phase synchronizati¢h4,15]. first consider an example of a drive-response system which

The framework of generalized synchronization was pro-Was proposed and studied in REZ0]. In this example, gen-
posed as an attempt to extend the classical theory of force®falized baker map
synchronization of a periodic oscillator, initiated by the

works of van der Pdl16] and Andronov and Witf17], to the " Aax(H it xXP'<a

case of directionally coupled chaotic oscillators. This frame- Xp+1= A ax® i x@=4 (1a)
work defines synchronization as the onset of conditional sta- a’ bin " '

bility of a chaotically driven oscillator and as the existence @ L2

of a functional relation that maps the chaotic trajectory of 2 | Xnla if xy’<a b
driving oscillator into the trajectory of driven oscillator Xnf1= (xff)—a)/b if xﬁf)za, (1b)

[10,18. In the case of invertible dynamics of the driving
system, such functional relation is usugll_y substitute(_j with Qvhere o=x<1, N,=1-1,=0.3, and a=1-b=0.5
function that maps the state of the driving system into the, . n
! rives a system of the form

state of response when these states are measured S|mul?a-
neously. Rigorous mathematical results indicate that, depend- B 1
ing on the strength of conditional stability, the synchroniza- Yn+1= CYn+ COS27X). @
tion function can be differentiable or nondifferentialpled— _ )
23]. In many experimental studies, the researcher needs fgere parametec defines the properties of the response be-
establish the fact of chaos synchronization when direchavior. Consider the system dynamics within the parameter
analysis of conditional stability is hardly possible. In such ainterval 0<c<1. In this case, response systéi is condi-
situation, the detection of generalized chaos synchrony chafionally stable. The dynamics of driving syste is invert-
acterized by a nondifferentiable function, which due to densdble, and according to the theorigee, for example, Refs.
wrinkles, cusps, and finite number of points appears as B2,23) there exists a continuous functign=h(x,), where
thick and fuzzy set, may seem to be imposs{#6,24,25.  X,=(x{"),x{?)). Due to the specific form of the driving and

In this paper we show that detectability of the nondiffer- response systems, functidn in our case, is independent of
entiable synchrony can be significantly improved and bex{?. Indeed, given the value of", all previous values of
come feasible if one explores synchronization function, takthis variable can be found from E{la), when one iterates
ing into account additional points on sufficiently long this one-dimensional map backward in time, and these values
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4.0 - \ \ - additional information about the driving chaotic trajectory
Xn, using its symbolic description. Now we define the state
> of the driving system as the value x*) . and the symbolic
-m
sequencqd «aq, . ..,xy] generated in the next consecutive
2.0 1 iterations towardx{" . In the considered example, symbols

a; can be easily defined from the evolution of variakf@ .
If x{?,<a, thena;=0. If x{?,=a, thena;=1. From the
data generated by the mafi3 and(2) we can examine syn-
00 - i chronization function in a new for™ which is defined as
a mapping [ay, - . . .am], X ) —v,.
In order to illustrate the improvement of the modified syn-
chronization functiorh(™ with the increase ofn, we ploty,,
20 . ‘ ‘ . vs (ay, .. ..aml,x{M,) for two fixed symbolic sequences
0.0 0.2 0.4 . 0.6 0.8 1.0 that differ by two most recent symbols. The casesnef4
X andm=28 are presented in Figs(® and Zb) respectively,
n where the parameters of the maps are the same as in Fig. 1.
FIG. 1. The shape of the functioy,=h(x")) computed with ~ Comparing these plots with the plot shown in Fig. 1 one can
c=0.7. see that the existence of synchronization function becomes
more apparent as the delay increases. Notice that the
are independent oq‘ff). Therefore, functiorh can be plotted scales of corresponding axes in these plots are the same.
as a graph in the variables planéX{,y,). We studied how the complex image of synchronized at-
The example of nondifferentiable functidy computed tractors in 'Fhe space o_f a dr_we-response system converges to
with ¢=0.7, is shown in Fig. 1. It is clear from the shape of @ “900d” simple function with the increase of. We ana-
the function that, in a practical situation with a similar func- IYzed the sets of attractor points conditioned by all possible
tion, the existence of the function cannot be revealed fronfymbolic masks of various lengtis For each mask of pre-
such a plot because the states of response system measuf€ding symbolsS,=[a;, ... ,apn] we computed the best
for nearby states of the driving system can be very dispersolynomial fitting function¢g (x) of order 30, using the
This situation can lead one to believe that the onset of nonSingular Value Decomposition algorithm, and studied the de-
differentiable generalized synchronization is practically un-pendence of mean squared err@y ), averaged over all
detectable. The statements on such practical undetectabilitiasks of lengthm, on the value ofm. This dependence,
are usually made when one analyses only relation betweetomputed for four different values @f is shown in Fig. 3.
simultaneous states in the attractors of the driving and re- One can see from Fig. 3 thEt, s decreases exponentially

sponse systems. One may ask if additional information abouaist whenm increases. Approximating this dependence with
the chaotic trajectory can help to resolve the complexity ofexponential

this functional relation? And if the answer is yes, which
properties of the nondifferentiable function can be im- Eys(m)~etm (©)]
proved?

To illustrate a positive answer to the first question, weone can find the rate of convergente Figure 4 shows how
adopt the approach developed in Re¥6] and consider the the convergence rate evolves with the change of parameter

4.0 T 4.0

. a) | - b
= 1011 @ 1 .= 10110101 (b)
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FIG. 2. The synchronization function computed using additional symbolic information on the driving trajectory for the case shown in Fig.
1. Only two symbolic masks, each of length are presented. The cage=4 is shown in pane{a) andm=28 is in panel(b).
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EMS case Gsxﬁ,l,)m<1. Computing the integer part, we assume

10° —6\@\9\@‘\9\6\9\{ that the most recent symbal, of maskS;,, is the most sig-
« nificant bit. As a result, we obtain the decimal values of the
form 1(S,)-x{",,. Every decimal value is considered as a
107 | ] new argument of the modified synchronization functié®.
Figure 5 presents such a function, plotted for three different
values ofm. One can see that for large(m>4), the overall
. shape and complexity of the function remains about the
same, but the interval of the argument increases in size by a
factor of 2". This indicates that there exists some kind of
self-similarity of the nondifferentiable synchronization func-
»— =07 tion, and the enhanced detectability is the result of more
4 | x—*c=06 precise evaluation of the state of the driving system. It is
0 o 4 6 8 important to note that the precision of the state evaluation
m increases withm, despite the fact that the values of variable
x() are measured with the same precision as before.
FIG. 3. The dependence of mean squared error of best polyno-
mial fitting function for the attractor points<{_,,y,) on lengthm
of the preceding masks,,.
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lIl. THEORETICAL RESULTS

The example considered above clearly indicates that the

valuec. The absolute value of decreases as the valueof functional relation between the synchronized system be-

grows. This indicates that for higher valuesoothe synchro-  comes more apparent when the length of the driving trajec-

nization function becomes more complg20] and its detec-  tory, taken for the analysis, increases. In order to examine

tion, with a given resolution, requires more information onWhich properties of the nondifferentiable function change,

the driving trajectory than for lower values of and simplify the detection of the functional relation, we
One can easily check that when-1, the conditional ~Present the following theoretical analysis.

dynamics of response SyStQﬁ) approaches the threshold of In this section we shall concentrate on systems with a

instability and, as the result, synchronization terminates an#gnidirectional coupling(or systems with a skew product

function h disappears. The plot ok vs c reflects this fact structure of the form

and one can see from Fig. 4 that convergence Aatends to

zero asc— 1. It can be shown that the linear dependence of x'=f(x),
A onlog() is due to the fact that the response system in this (4
example is a linear system and Ifmj)is the contraction rate y' =g,(X,y)

pA YT

of its phase volume.
To get a better view on the function improvement, exam-

ine how additional symbolic information collected along theThe.Se equations determine a map:(x,y)'—>(x’,y’_), gen-
driving trajectory changes the shape of the whole synchronierat'ng a dynamical system. The first subsystem is called the

zation function. One way of taking such symbolic informa- driving system, the second subsystem is called the response

tion into account is to compute the integer value out of bi-System andp is a parameter that c_ontrpls the coupling

nary symbolic maskS., and, then, supplement this integer strength. The fact of synchronization in this systems, means

with the fractional varlnue gi;/en bg((l) Note that in our that there is a region of parameter valgei®m which, for any
nmm initial condition (X9,Yo), (Xo.Yo),

limd(y,,y,) =0, (5)

n—o

where  &,.Yn) =Fp(X0.Yo) [(Xn.¥n)=Fp(X0,¥0)] and
d(y,, Yn) is a distance in the phase space betweeandy,,.
Loosely speaking, this means that, for any initial condition,
the distance between the states of the slave subsystem goes
to zero with time.

We assume, for the sake of definiteness, that in sysfém
one hasce R? andy e RY, and thatg, is continuous and is
a homeomorphism. Since we study dissipative systems, we
also assume that there exists a ball of dissipaBanR?"*,
i.e., F,(B)CInt(B) for any pe S, whereSis a region inp

FIG. 4. The dependence of convergence raten the value of ~ spacelin which, system(4) exhibits synchronization With-
coupling parametee, plotted in the logarithmic scale. out loss of generality we assume tigat B, X B, , i.e.,Bis a
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4.0 . globally stable generalized synchronization occurBi,ne.,
< (a) conditio.n(5).is satisfied whenxg,yo) and g Vo) are arbi-
~ trary points inB.
It was shown in Ref[23] that under these conditions,
2.0 there is a continuous functional dependence betwesamdy
/ components of orbits while the system is in synchronized
| region. To obtain more detailed characteristics of this func-
tional dependence, we need an additional assumption. As-
0.0 I | sume that
' |yn+1_§n+1|$c|yn_’§/n|a (6)
wherec<1. Of course, parameteris a function ofp. For
20,0 20 30 - 12.0 16.0 the sake of simplicity, we assume that p. Thus,
v ~ ~
n |Yn+1_yn+1|$9|yn_)/n|a 0<p<1l. (7)
4.0 ' It follows that
= (b) - -
=~ 19,(x,Y) = 9,(x,Y)|<ply—Y]| (8)
2.0 r 1 for any (x,y), (x,y)eB. Let us draw attention to the fact
\/ that smaller the value gf, greater the coupling strength.
Assumption(7) implies that|y,—y,| goes to zero expo-
nentially fast, and this fact allows one to prove that function
0.0 r i h:x,—Y, is Hoder continuous, provided that the functioihs
and g, have good smooth properties, or at least they are
Lipschitz continuous. So we assume that
-20 : : : f(x)— fF(X)|<7y.|x—X 9
0.0 16.0 32.0 48.0 64.0 [f)=100= 4] | ©
(6)
and
n
4.0 : £ 1) — 2% | < y_|x—X], (10)
>§ . (c) wherey_,y,.=1. Herey, characterizes the rate of diver-
| gence of nearby driving trajectories, forward in time and
o0 L characterizes their divergence, backward in time. Moreover,
we assume that
| 19,06,Y) = g,(%.y)| < n|x—X| (11)
Il ‘ ‘ AN for any (x,y), (x,y) e B, where>0.
! The following statement was proved in RE23].
Theorem 1 (Hiler property). Under assumption$8)—
20 (12), function h is Holder continuous, i.e., for any O«
o0 64.0 128.0 ® 192.0 256.0 <ag andx,xe A, , one has
n — o < _~ @
FIG. 5. The synchronization function, shown in Fig. 1, plotted () —h(o]<2alx=x]%, (12
vs a new variable (" :=1(S},).x{", which contains symbolic in- \yhere
formation about the driving trajectory. Pari@) shows the casm
=4, (b) m=6, and(c) m=8. Note the changes in the values of the IN(y,y_) -1
horizontal axes. a<ap=|1l- T (13

rectangle, wher®, (B,) is a ball inx space ¥ spac¢. We
denote by A, the maximal attractor inB, i.e., A,

=Nn=oF ;(B). = T QinGry g,y yi-(niByling),

Throughout this section we shall assume that one-to-one Vi—p

anda=a,, wherea=a, is the solution of the equation
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Here |B,| stands for the diameter dB,. Recall that

Holder exponents quantify the “degree of nondifferentiabil-

ity.”

Our goal is to understand what happens if one tries t

study the dependence betwegrtoordinate of the orbit at
iterationn and x coordinate at moment—m, for m>0. In

other words, we are going to study the effect of the “delay”
on the functional dependence in the synchronized region.

The following result holds.

Theorem 2Let conditions of Theorem 1 be satisfied and

(Xn.¥n)» (Xn, Yn) be orbits belonging tol, . Then, for every
€>0, there exists$>>0 such that for every pak,_,Xp—m
(|Xn—m—Xn—m| < &) one has

|yn_yn|$A|anm_;‘(n7m|av (14)
where
In(y.y-)] ™t
a$a0+,8(6), ag= 1—T , (15)
andA=A,,, wherepB(e)—0 ase—0,
An=etoy_", (16)

and g is a constant independent ot

Proof. Without loss of generality, we prove estimdfiel)
for n=0. The proof for other values af is the same. Let
A, x=11,A, be the image of4, under the natural projection
IT, to RY.

Consider a poinkye A, x . Letx_;j=f"'(xo). Given the
backward orbit{x_;}/_,, the dynamics orB, is defined by
the sequence of operatdg,(x_;,-)};~o acting onB, . We
define “x” as the following operation:

(9p%9,) (X,Y)=9,(f(X),g,(x,¥))-

We denote b)g;k(x,y) the result of the operationx” per-
formed k times (by convention g;C’Egp). Notice that
*k _ k
gp (va)_Hpr(Xay) -
Consider two pointsXy,Yo) and (Xg,Yo) in the attractor,
i.e.,Yo=h(Xo), Yo=h(Xo). Their backward orbits, upto time
k, are also contained in the attractor. We denote them by

(X—kry—k)! e i(X—lay—l)!(XO!yO)
and
(XY -1y« + (X1, -1),(X0,Y0)-
By construction, we have that
Xo=F¥(X_y),
yozg,:k(x—k:Y—k)

and

Xo=FK(X_),

PHYSICAL REVIEW E 67, 066218 (2003

Yo=K (X k.Y i)

4rom these equations we can estim|qtt@—?o|. Indeed, tri-

angle inequality yields

Yo—Yol= |g;k(x—k Y1)~ g;k(x—k Y-l
17)

+]g5 XY -0~ 85 (XY

The first term on the right can be bounded using the fol-
lowing contracting property of:

|g;k(xfk1y7k)_g;k(xfk&—n)|$pk|8y|1 (18

where [B,| stands for diam,). The second term can be
bounded by

9K (X Y- = O (X Y- < Lidx =%, (19)

wherelL, is the Lipschitz constant cg;k(~ ,Y). According to
Lemma 16 in Ref[23],

7k
L=< . (20
k y.—p Y+
Using assumptioril0) one gets
|X7k_’;(7k|$ '}’k—_m|xfm_’;(fm|- (21)

Putting together these inequalities, one obtains, fok,all

Y- (v Y )X =X
(22

—Yol=<pNB,|+
lYo—Yol=<p"| y| yi—p

For a givene, we fix a smallo=o(€)>0, whereoy(e) satisfy
the relation[ p/(p+ o) 1¥|By| =€, and rewrite the first term
in Eqg. (22) as follows:

k

pk|By|=(p+ O')k|By| , (23)

P
pto
then set

(p+ o) =|X_m—X_m| (24)
Therefore, using standard logarithmic identity

(v4+ 77)"5 GKloga(v+7-)
with G=|x_,—X_| and formula(24), one can write
—X_ |l IOy i+ )]

(29

Let a=a(o)=[1—In(y,y_)In(p+0)] 1. Then, Eq. (22
implies

(y+y-)=x_n
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k

~ Y _ ~ 10 . . .
—Vol<||——] |B|+ “Mix x| (@),
|y0 y0| pt+o | y| yi—p Y | m m| E

Thus, if|X_m—X_m| is small enough, thek is large enough 10" | i

because of Eq.(24). Therefore, [p/(p+a)]k|By|se,
a(o)=ay+B(e), where B(e)=In(y+y)[In(1+oy/p)/Inpin(ay

+p)], and the statement of Theorem 2 holds. | 2
Hence, we have shown that while the ltier exponent 102 L° ° 6 =0.0 p
remains the same as fon=0, the Hdder constantAy, o o5 =0.001
given by formula(16), can be as small as we wish, provided s
that points on the graph of functidmare close enough. In +— ¢ =0.01
the numerical example presented in Sec. Il, the closeness of 3 | 2
driving trajectories was achieved by selecting the trajectories 0 =0.1
with the same symbolic sequensk,. 0 2 4 6 8

IV. EFFECTS OF NOISE
FIG. 6. The dependence of mean squared error of best polyno-

The studies presented in Secs. Il and lll deal with themial fitting function for the attractor points<§_,,y,) on the mask
detectability issues of nondifferentiablerinkled) synchro-  lengthm computed forc=0.7 and four different values of variance
nization function when data, acquired from the drive ando of the noise added tg, data.
response systems, are not contaminated by noise. In a real-
istic situation, external noise is always present in the data.

Taking into account the complexity of fine structure, typical namely, by.(’R' It is clear that the size of the th|ckness
for wrinkled synchronization functions, one may expect that(alongy variablg does not change under the transformations

even a very small noise in the data ruins the detectability Oﬁpplied to the data representing the driving trajectory. Since

synchronization. We studied the noise impact using the nu2Y" method is not designed to locate the function inside this

merical example considered in Sec. II. We examined how theuzzy layer, we ca2nn0t expect the accurgeyterms ofErw)
convergence of the wrinkled functid™ to a polynomial to be better ,thaWR' . o
function is effected by external noise. When noise occurs in the measurements of the driving
The behavior of synchronized systems can be influencetf@fiable €,#0 and £,=0) the conversion process has a

by a noise in many different ways. For example, stochastidifférent dynamicssee Fig. 7. Now the graph of the func-
forces, applied to the response or drive system, destroy tHion in Fig. 1 is transformed into a thick layer due to scatter-
functional relation between the systems, independent of thif'9 of data points along variabte However, as it follows
complexity of the function shape. The level of destruction inffom Fig. 7, this thickness does not limit the precision of

this case will significantly depend upon the dynamical IorOIO_funct_ion e\_/aluation. This effect_ can be understood from th_e
erties of the coupled systems. considerations presented in Figs. 1 and 5. Indeed, the in-

To be specific, we will examine only the case when theCréase of trajectory .Iength in the analysis of the funetion is
synchronization function exists, but the data representing thigduivalent to rescaling of the function argument, while the
function are contaminated with a noise added to the measure- o
ments. Namely, we are dealing with the daf@+ £, and E 10
Yo+ &n, wherex(") andy,, are generated by Eqgl) and(2)
and the independent noisy componeétsand {,, are white
Gaussian noise with variances, and o3, respectively. In
the numerical analysis, we will also assume that symbolic
sequences of driving trajectories are detected correctly.

We found thaté, and{, influence the convergence prop-
erties differently. To illustrate it, consider, first, the cases
when only one source of noise in present. Figure 6 shows the
effect of the noise that occurred in the measurements of the
response systeméf=0 and{,#0) for different values of o~ o 02p=0-01
variancecré. Noise of this type sets a limit on the precision 10°
of the function resolutiorisee Fig. . The numerical analy-
sis ehows that the Iimi_t if_’,\*,lsw o%. This result is quite 0 2 4 6 8
predictable. Indeed, noise in the response system destroys m
the function by scattering points alolygvariable and makes
a thick object(a fuzzy layey instead of grapth™. The FIG. 7. The dependence &5 on m computed forc=0.7 and
thickness of the layer is characterized by the level of noisefour different values of variance? of the noise added t" data.

1072 )
e ¢ ,=0.001

[+—* " p=0.1
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The results presented in this paper are in agreement with
the recent study on detection of generalized synchrony made
by He, Zheng, and Stong27]. Their study is based on a
different technique that involves the analysis of drive and
response trajectories in the embedded phase spaces, and
1 takes into accoun preimages for each trajectory point. The
use of the preimages in this case also acts as a magnifying
glass in detecting of the wrinkled synchronization function.

In the example considered in Sec. Il, the synchronization
function depends only on thd) variable, which is the co-
ordinate that always represents a stable direction i&table
and unstable directions ixispace in this driving system are
fixed and do not dependent on Therefore, the differential
‘ of this map is a constant matrix. In a more general situation
0 2 4 6 8 this is not the case, and the synchronization function must

m depend on both stable and unstable coordinates. Neverthe-
less, it is possible to understaf@lthough it is not so simple
% prove that the dependence on the unstable coordinate is
nonessential in the hyperbolic situations. The simplest way
to be convinced is to remember that for hyperbolic attractor
overall shape of the function does not charigee Fig. 5.  there exists a local Hder-continuous change of variables,
While the interval of the argument values increases with theuch that in new variables the stable and unstable directions
trajectory length, as', thex size of the thick layer remains are along the coordinate lin¢planes and the situation be-
unchanged. As a result, an increasenofin this case, im- comes very similar to the example considered.
proves the precision of function detection. We examined the influence of external noise on the func-

The effects induced by additive noise in the data are sumtion improvement. We found that noise in the data acquired
marized in Fig. 8 where the dependenceHfs on m is from the response system sets a limit for the accuracy of the
shown for three different situations of nois&,E0, ¢, function approximation and, as a result, after some critical
#0), (£&,#20, £,=0), and ¢,#0, {,#0). These plots are Vvalue ofm, further increase of delay becomes useless.
computed for the coupling strength=0.7. The results indi- To conclude, we would like to emphasize that although
cate that if the level of noise in the data is small, a nondif-we apply our study to the theory of chaos synchronization,
ferentiable function is detectable with some accuracy limitedhe data analysis method and theory developed here can be
by the noise variance. useful for other applications. Such applications include pre-

In this analysis we assumed that the symbolic sequenc@iction of chaotic dynamical behavior in time and space and
representing the driving trajectory is detected correctly. Wedther studies associated with various types of prediction. The
expect that if the symbolic sequence contains errors then thése of hybrid, “continuous-symbolic” representation of the
modified functionh(™ can be severely damaged and the im-chaotic trajectories enables one to take into account addi-
provement of function detection can fail. We believe that thetional information about the trajectory in a compact way.
use of a noise reduction technique can be very beneficial for It is clear that, since improvement of the function detect-

| e—o 6°4=0.01, 6",=0.0
5—=a ¢°,=0.0, 6°,=0.01

o0’ ,=0.01, 6",=0.01

FIG. 8. The dependence of mean squared error of best polyn
mial fitting function for the attractor pointsxg_,y,) on the tra-
jectory lengthm computed for three different n.

correcting of errors in the symbolic sequence. ability relies on increasing of resolution in the analysis of
chaotic attractor in the driving system, each step in the im-
V. CONCLUSIONS provement requires a larger number of points to be available

for the analysis. As a result, detectability of the function can

A simple numerical example and rigorous theoreticalpe limited not only by a noise in the data, but also by the
analysis show that, despite complex shapes of nondifferenimited number of data points.

tiable synchronization functions, the existence of such a

function can be detectable in practical situation. This can be
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