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Detectability of nondifferentiable generalized synchrony

Nikolai F. Rulkov1 and Valentin S. Afraimovich2
1Institute for Nonlinear Science, University of California, San Diego, La Jolla, California 92093-0402, USA

2Instituto de Investigacio´n en Communicacio´n Optica, Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico
~Received 16 October 2002; revised manuscript received 23 April 2003; published 27 June 2003!

Generalized synchronization of chaos is a type of cooperative behavior in directionally coupled oscillators
that is characterized by existence of stable and persistent functional dependence of response trajectories from
the chaotic trajectory of driving oscillator. In many practical cases this function is nondifferentiable and has a
very complex shape. The generalized synchrony in such cases seems to be undetectable, and only the cases in
which a differentiable synchronization function exists are considered to make sense in practice. We show that
this viewpoint is not always correct and the nondifferentiable generalized synchrony can be revealed in many
practical cases. Conditions for detection of generalized synchrony are derived analytically, and illustrated
numerically with a simple example of nondifferentiable generalized synchronization.
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I. INTRODUCTION

Synchronization plays an important role both for und
standing of cooperative behavior in natural networks of
cillators @1# and for various engineering applications@2,3#.
Recently, a significant interest in understanding and giv
theoretical description of synchronization regimes, amo
the oscillators with chaotic behavior, is perceived; see,
example, recent books and reviews@4–6#. Various types of
chaos synchrony, whose description may require differ
theoretical frameworks, were found in natural systems
specified. These types of synchrony include identical s
chronization @7–9#, generalized synchronization@10–13#,
and phase synchronization@14,15#.

The framework of generalized synchronization was p
posed as an attempt to extend the classical theory of fo
synchronization of a periodic oscillator, initiated by th
works of van der Pol@16# and Andronov and Witt@17#, to the
case of directionally coupled chaotic oscillators. This fram
work defines synchronization as the onset of conditional
bility of a chaotically driven oscillator and as the existen
of a functional relation that maps the chaotic trajectory
driving oscillator into the trajectory of driven oscillato
@10,18#. In the case of invertible dynamics of the drivin
system, such functional relation is usually substituted wit
function that maps the state of the driving system into
state of response when these states are measured sim
neously. Rigorous mathematical results indicate that, dep
ing on the strength of conditional stability, the synchroniz
tion function can be differentiable or nondifferentiable@19–
23#. In many experimental studies, the researcher need
establish the fact of chaos synchronization when dir
analysis of conditional stability is hardly possible. In such
situation, the detection of generalized chaos synchrony c
acterized by a nondifferentiable function, which due to de
wrinkles, cusps, and finite number of points appears a
thick and fuzzy set, may seem to be impossible@20,24,25#.

In this paper we show that detectability of the nondiffe
entiable synchrony can be significantly improved and
come feasible if one explores synchronization function, t
ing into account additional points on sufficiently lon
1063-651X/2003/67~6!/066218~8!/$20.00 67 0662
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intervals of the driving trajectory preceding the current sta
The paper is organized as follows. In Sec. II we discuss
idea of such detectability and evaluate the improvement
ing numerical analysis of a simple example. Section III d
velops a theoretical argument explaining the mechanism
hind the detectability improvement. Section IV discuss
possible effects caused by small additive noise in the d
Summary of the results and possible applications are
cussed in the Conclusion.

II. NUMERICAL EXAMPLE

To illustrate the idea of detectability enhancement,
first consider an example of a drive-response system wh
was proposed and studied in Ref.@20#. In this example, gen-
eralized baker map

xn11
(1) 5H laxn

(1) if xn
(2),a

la1lbxn
(1) if xn

(2)>a,
~1a!

xn11
(2) 5H xn

(2)/a if xn
(2),a

~xn
(2)2a!/b if xn

(2)>a,
~1b!

where 0<xn
( i ),1, la512lb50.3, and a512b50.5

drives a system of the form

yn115cyn1cos~2pxn
(1)!. ~2!

Here parameterc defines the properties of the response b
havior. Consider the system dynamics within the parame
interval 0,c,1. In this case, response system~2! is condi-
tionally stable. The dynamics of driving system~1! is invert-
ible, and according to the theory~see, for example, Refs
@22,23#! there exists a continuous functionyn5h(xn), where
xn5(xn

(1) ,xn
(2)). Due to the specific form of the driving an

response systems, functionh, in our case, is independent o
xn

(2) . Indeed, given the value ofxn
(1) , all previous values of

this variable can be found from Eq.~1a!, when one iterates
this one-dimensional map backward in time, and these va
©2003 The American Physical Society18-1
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are independent ofxn
(2) . Therefore, functionh can be plotted

as a graph in the variables plane (xn
(1) ,yn).

The example of nondifferentiable functionh, computed
with c50.7, is shown in Fig. 1. It is clear from the shape
the function that, in a practical situation with a similar fun
tion, the existence of the function cannot be revealed fr
such a plot because the states of response system mea
for nearby states of the driving system can be very dispe
This situation can lead one to believe that the onset of n
differentiable generalized synchronization is practically u
detectable. The statements on such practical undetecta
are usually made when one analyses only relation betw
simultaneous states in the attractors of the driving and
sponse systems. One may ask if additional information ab
the chaotic trajectory can help to resolve the complexity
this functional relation? And if the answer is yes, whi
properties of the nondifferentiable function can be i
proved?

To illustrate a positive answer to the first question,
adopt the approach developed in Ref.@26# and consider the

FIG. 1. The shape of the functionyn5h(xn
(1)) computed with

c50.7.
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additional information about the driving chaotic trajecto
xn , using its symbolic description. Now we define the sta
of the driving system as the value ofxn2m

(1) and the symbolic
sequence@a1 , . . . ,am# generated in the next consecutiv
iterations towardsxn

(1) . In the considered example, symbo
a i can be easily defined from the evolution of variablexn

(2) .
If xn2 i

(2) ,a, then a i50. If xn2 i
(2) >a, then a i51. From the

data generated by the maps~1! and~2! we can examine syn
chronization function in a new formh(m) which is defined as
a mapping (@a1 , . . . ,am#,xn2m

(1) )→yn .
In order to illustrate the improvement of the modified sy

chronization functionh(m) with the increase ofm, we plotyn

vs (@a1 , . . . ,am#,xn2m
(1) ) for two fixed symbolic sequence

that differ by two most recent symbols. The cases ofm54
and m58 are presented in Figs. 2~a! and 2~b! respectively,
where the parameters of the maps are the same as in F
Comparing these plots with the plot shown in Fig. 1 one c
see that the existence of synchronization function beco
more apparent as the delaym increases. Notice that th
scales of corresponding axes in these plots are the sam

We studied how the complex image of synchronized
tractors in the space of a drive-response system converg
a ‘‘good’’ simple function with the increase ofm. We ana-
lyzed the sets of attractor points conditioned by all possi
symbolic masks of various lengthsm. For each mask of pre
ceding symbolsSm

i 5@a1 , . . . ,am# we computed the bes
polynomial fitting functionfS

m
i (x) of order 30, using the

Singular Value Decomposition algorithm, and studied the
pendence of mean squared error (EMS), averaged over all
masks of lengthm, on the value ofm. This dependence
computed for four different values ofc, is shown in Fig. 3.

One can see from Fig. 3 thatEMS decreases exponentiall
fast whenm increases. Approximating this dependence w
exponential

EMS~m!;eLm, ~3!

one can find the rate of convergenceL. Figure 4 shows how
the convergence rateL evolves with the change of paramet
in Fig.
FIG. 2. The synchronization function computed using additional symbolic information on the driving trajectory for the case shown
1. Only two symbolic masks, each of lengthm, are presented. The casem54 is shown in panel~a! andm58 is in panel~b!.
8-2
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DETECTABILITY OF NONDIFFERENTIABLE . . . PHYSICAL REVIEW E 67, 066218 ~2003!
valuec. The absolute value ofL decreases as the value ofc
grows. This indicates that for higher values ofc, the synchro-
nization function becomes more complex@20# and its detec-
tion, with a given resolution, requires more information
the driving trajectory than for lower values ofc.

One can easily check that whenc→1, the conditional
dynamics of response system~2! approaches the threshold o
instability and, as the result, synchronization terminates
function h disappears. The plot ofL vs c reflects this fact
and one can see from Fig. 4 that convergence rateL tends to
zero asc→1. It can be shown that the linear dependence
L on log(c) is due to the fact that the response system in
example is a linear system and log(ucu) is the contraction rate
of its phase volume.

To get a better view on the function improvement, exa
ine how additional symbolic information collected along t
driving trajectory changes the shape of the whole synchr
zation function. One way of taking such symbolic inform
tion into account is to compute the integer value out of
nary symbolic maskSm

i and, then, supplement this integ
with the fractional value given byxn2m

(1) . Note that in our

FIG. 3. The dependence of mean squared error of best pol
mial fitting function for the attractor points (xn2m ,yn) on lengthm
of the preceding masksSm

i .

FIG. 4. The dependence of convergence rateL on the value of
coupling parameterc, plotted in the logarithmic scale.
06621
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case 0<xn2m
(1) ,1. Computing the integer part, we assum

that the most recent symbola1 of maskSm
i is the most sig-

nificant bit. As a result, we obtain the decimal values of t
form I (Sm

i )•xn2m
(1) . Every decimal value is considered as

new argument of the modified synchronization functionh(m).
Figure 5 presents such a function, plotted for three differ
values ofm. One can see that for largem (m.4), the overall
shape and complexity of the function remains about
same, but the interval of the argument increases in size
factor of 2m. This indicates that there exists some kind
self-similarity of the nondifferentiable synchronization fun
tion, and the enhanced detectability is the result of m
precise evaluation of the state of the driving system. It
important to note that the precision of the state evaluat
increases withm, despite the fact that the values of variab
x(1) are measured with the same precision as before.

III. THEORETICAL RESULTS

The example considered above clearly indicates that
functional relation between the synchronized system
comes more apparent when the length of the driving tra
tory, taken for the analysis, increases. In order to exam
which properties of the nondifferentiable function chang
and simplify the detection of the functional relation, w
present the following theoretical analysis.

In this section we shall concentrate on systems with
unidirectional coupling~or systems with a skew produc
structure! of the form

x85 f ~x!,
~4!

y85gr~x,y!.

These equations determine a mapFr :(x,y)°(x8,y8), gen-
erating a dynamical system. The first subsystem is called
driving system, the second subsystem is called the resp
system andr is a parameter that controls the couplin
strength. The fact of synchronization in this systems, me
that there is a region of parameter valuesr in which, for any
initial condition (x0 ,y0), (x0 ,ỹ0),

lim
n→`

d~yn ,ỹn!50, ~5!

where (xn ,yn)5Fr
n(x0 ,y0) @(xn ,ỹn)5Fr

n(x0 ,ỹ0)# and
d(yn, ỹn) is a distance in the phase space betweenyn andỹn.
Loosely speaking, this means that, for any initial conditio
the distance between the states of the slave subsystem
to zero with time.

We assume, for the sake of definiteness, that in system~4!
one hasxPRd andyPR,, and thatgr is continuous andf is
a homeomorphism. Since we study dissipative systems,
also assume that there exists a ball of dissipationB,Rd1,,
i.e., Fr(B),Int(B) for any rPS, whereS is a region inr
space@in which, system~4! exhibits synchronization#. With-
out loss of generality we assume thatB5Bx3By , i.e.,B is a

o-
8-3
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rectangle, whereBx (By) is a ball inx space (y space!. We
denote by Ar the maximal attractor inB, i.e., Ar

5ùn50
` Fr

n(B).
Throughout this section we shall assume that one-to-

FIG. 5. The synchronization function, shown in Fig. 1, plott
vs a new variablevn

(m)
ªI (Sm

i ).xn2m
(1) which contains symbolic in-

formation about the driving trajectory. Panel~a! shows the casem
54, ~b! m56, and~c! m58. Note the changes in the values of th
horizontal axes.
06621
e

globally stable generalized synchronization occurs inB, i.e.,
condition~5! is satisfied when (x0 ,y0) and (x0 ,ỹ0) are arbi-
trary points inB.

It was shown in Ref.@23# that under these conditions
there is a continuous functional dependence betweenx andy
components of orbits while the system is in synchroniz
region. To obtain more detailed characteristics of this fu
tional dependence, we need an additional assumption.
sume that

uyn112 ỹn11u<cuyn2 ỹnu, ~6!

wherec,1. Of course, parameterc is a function ofr. For
the sake of simplicity, we assume thatc5r. Thus,

uyn112 ỹn11u<ruyn2 ỹnu, 0,r,1. ~7!

It follows that

ugr~x,y!2gr~x,ỹ!u<ruy2 ỹu ~8!

for any (x,y), (x,ỹ)PB. Let us draw attention to the fac
that smaller the value ofr, greater the coupling strength.

Assumption~7! implies thatuyn2 ỹnu goes to zero expo-
nentially fast, and this fact allows one to prove that functi
h:xn°yn is Hölder continuous, provided that the functionsf
and gr have good smooth properties, or at least they
Lipschitz continuous. So we assume that

u f ~x!2 f ~ x̃!u<g1ux2 x̃u ~9!

and

u f 21~x!2 f 21~ x̃!u<g2ux2 x̃u, ~10!

whereg2 ,g1>1. Hereg1 characterizes the rate of dive
gence of nearby driving trajectories, forward in time andg2

characterizes their divergence, backward in time. Moreo
we assume that

ugr~x,y!2gr~ x̃,y!u<hux2 x̃u ~11!

for any (x,y), (x̃,y)PB, whereh.0.
The following statement was proved in Ref.@23#.
Theorem 1 (Ho¨lder property). Under assumptions~8!–

~11!, function h is Hölder continuous, i.e., for any 0,a

,a0 andx,x̃PAr,x one has

uh~x!2h~ x̃!u<2aux2 x̃ua, ~12!

where

a<a0[F12
ln~g1g2!

ln r G21

~13!

anda>a0, wherea5a0 is the solution of the equation

a5
h

g12r
a[ ln(g1g2)/ ln r]~g1g2!12(lnuByu/ ln r).
8-4
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Here uByu stands for the diameter ofBy . Recall that
Hölder exponents quantify the ‘‘degree of nondifferentiab
ity.’’

Our goal is to understand what happens if one tries
study the dependence betweeny coordinate of the orbit a
iterationn andx coordinate at momentn2m, for m.0. In
other words, we are going to study the effect of the ‘‘dela
on the functional dependence in the synchronized reg
The following result holds.

Theorem 2.Let conditions of Theorem 1 be satisfied a
(xn ,yn), (x̃n, ỹn) be orbits belonging toAr . Then, for every
e.0, there existsd.0 such that for every pairxn2m ,x̃n2m

(uxn2m2 x̃n2mu,d) one has

uyn2 ỹnu<Auxn2m2 x̃n2mua, ~14!

where

a<a01b~e!, a0[F12
ln~g1g2!

ln r G21

, ~15!

andA>Am , whereb~e!→0 ase→0,

Am5e1%g2
2m, ~16!

and% is a constant independent ofm.
Proof. Without loss of generality, we prove estimate~14!

for n50. The proof for other values ofn is the same. Let
Ar,x[PxAr be the image ofAr under the natural projection
Px to Rd.

Consider a pointx0PAr,x . Let x2 i[ f 2 i(x0). Given the
backward orbit$x2 i% i 50

` , the dynamics onBy is defined by
the sequence of operators$gr(x2 i ,•)% i 50

` acting onBy . We
define ‘‘!’’ as the following operation:

~gr!gr!~x,y![gr„f ~x!,gr~x,y!….

We denote bygr
!k(x,y) the result of the operation ‘‘!’’ per-

formed k times ~by convention gr
!0[gr). Notice that

gr
!k(x,y)5PyFr

k(x,y).

Consider two points (x0 ,y0) and (x̃0 ,ỹ0) in the attractor,
i.e., y05h(x0), ỹ05h( x̃0). Their backward orbits, upto time
k, are also contained in the attractor. We denote them by

~x2k ,y2k!, . . . ,~x21 ,y21!,~x0 ,y0!

and

~ x̃2k ,ỹ2k!, . . . ,~ x̃21 ,ỹ21!,~ x̃0 ,ỹ0!.

By construction, we have that

x05 f k~x2k!,

y05gr
!k~x2k ,y2k!

and

x̃05 f k~ x̃2k!,
06621
o

’
n.

ỹ05gr
!k~ x̃2k ,ỹ2k!.

From these equations we can estimateuy02 ỹ0u. Indeed, tri-
angle inequality yields

uy02 ỹ0u<ugr
!k~x2k ,y2k!2gr

!k~x2k ,ỹ2k!u

1ugr
!k~x2k ,ỹ2k!2gr

!k~ x̃2k ,ỹ2k!u. ~17!

The first term on the right can be bounded using the f
lowing contracting property ofg:

ugr
!k~x2k ,y2k!2gr

!k~x2k ,ỹ2n!u<rkuByu, ~18!

where uByu stands for diam(By). The second term can b
bounded by

ugr
!k~x2k ,ỹ2k!2gr

!k~ x̃2k ,ỹ2k!u<Lkux2k2 x̃2ku, ~19!

whereLk is the Lipschitz constant ofgr
!k(•,y). According to

Lemma 16 in Ref.@23#,

Lk<
h

g12r
g1

k
• ~20!

Using assumption~10! one gets

ux2k2 x̃2ku<g2
k2mux2m2 x̃2mu. ~21!

Putting together these inequalities, one obtains, for allk,

uy02 ỹ0u<rkuByu1
h

g12r
g2

2m~g1g2!kux2m2 x̃2mu.

~22!

For a givene, we fix a smalls>s0~e!.0, wheres0~e! satisfy
the relation@r/~r1s0!#kuByu5e, and rewrite the first term
in Eq. ~22! as follows:

rkuByu5~r1s!kuByuS r

r1s D k

, ~23!

then set

~r1s!k>ux2m2 x̃2mua. ~24!

Therefore, using standard logarithmic identity

~g1g2!k[GklogG(g1g2)

with G5ux2m2 x̃2mu and formula~24!, one can write

~g1g2!k>ux2m2 x̃2mu [a ln(g1g2)/ ln(r1s)] . ~25!

Let a5a(s)5@12 ln(g1g2)/ln(r1s)#21. Then, Eq. ~22!
implies
8-5
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uy02 ỹ0u<F S r

r1s D k

uByu1
h

g12r
g2

2mG ux2m2 x̃2mua(s).

~26!

Thus, if ux2m2 x̃2mu is small enough, thenk is large enough
because of Eq. ~24!. Therefore, @r/(r1s)#kuByu<e,
a~s!5a01b~e!, where b~e!5ln~g1g!@ln~11s0/r!/lnrln~s0
1r!#, and the statement of Theorem 2 holds. j

Hence, we have shown that while the Ho¨lder exponent
remains the same as form50, the Hölder constantAm ,
given by formula~16!, can be as small as we wish, provide
that points on the graph of functionh are close enough. In
the numerical example presented in Sec. II, the closenes
driving trajectories was achieved by selecting the trajecto
with the same symbolic sequenceSm

i .

IV. EFFECTS OF NOISE

The studies presented in Secs. II and III deal with
detectability issues of nondifferentiable~wrinkled! synchro-
nization function when data, acquired from the drive a
response systems, are not contaminated by noise. In a
istic situation, external noise is always present in the d
Taking into account the complexity of fine structure, typic
for wrinkled synchronization functions, one may expect th
even a very small noise in the data ruins the detectability
synchronization. We studied the noise impact using the
merical example considered in Sec. II. We examined how
convergence of the wrinkled functionh(m) to a polynomial
function is effected by external noise.

The behavior of synchronized systems can be influen
by a noise in many different ways. For example, stocha
forces, applied to the response or drive system, destroy
functional relation between the systems, independent of
complexity of the function shape. The level of destruction
this case will significantly depend upon the dynamical pro
erties of the coupled systems.

To be specific, we will examine only the case when t
synchronization function exists, but the data representing
function are contaminated with a noise added to the meas
ments. Namely, we are dealing with the dataxn

(1)1jn and
yn1zn , wherexn

(1) andyn are generated by Eqs.~1! and~2!
and the independent noisy componentsjn and zn are white
Gaussian noise with variancessD

2 and sR
2 , respectively. In

the numerical analysis, we will also assume that symb
sequences of driving trajectories are detected correctly.

We found thatjn andzn influence the convergence prop
erties differently. To illustrate it, consider, first, the cas
when only one source of noise in present. Figure 6 shows
effect of the noise that occurred in the measurements of
response system (jn50 andznÞ0) for different values of
variancesR

2 . Noise of this type sets a limit on the precisio
of the function resolution~see Fig. 6!. The numerical analy-
sis shows that the limit isEMS* 'sR

2 . This result is quite
predictable. Indeed, noise in the response system des
the function by scattering points alongy variable and makes
a thick object~a fuzzy layer! instead of graphh(m). The
thickness of the layer is characterized by the level of no
06621
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namely, by sR
2 . It is clear that the size of the thicknes

~alongy variable! does not change under the transformatio
applied to the data representing the driving trajectory. Si
our method is not designed to locate the function inside
fuzzy layer, we cannot expect the accuracy~in terms ofERM)
to be better thansR

2 .
When noise occurs in the measurements of the driv

variable (jnÞ0 and zn50) the conversion process has
different dynamics~see Fig. 7!. Now the graph of the func-
tion in Fig. 1 is transformed into a thick layer due to scatt
ing of data points along variablex. However, as it follows
from Fig. 7, this thickness does not limit the precision
function evaluation. This effect can be understood from
considerations presented in Figs. 1 and 5. Indeed, the
crease of trajectory length in the analysis of the function
equivalent to rescaling of the function argument, while t

FIG. 6. The dependence of mean squared error of best pol
mial fitting function for the attractor points (xn2m ,yn) on the mask
lengthm computed forc50.7 and four different values of varianc
sR

2 of the noise added toyn data.

FIG. 7. The dependence ofEMS on m computed forc50.7 and
four different values of variancesD

2 of the noise added toxn
(1) data.
8-6
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overall shape of the function does not change~see Fig. 5!.
While the interval of the argument values increases with
trajectory length, as 2m, thex size of the thick layer remain
unchanged. As a result, an increase ofm, in this case, im-
proves the precision of function detection.

The effects induced by additive noise in the data are s
marized in Fig. 8 where the dependence ofEMS on m is
shown for three different situations of noise (jn50, zn
Þ0), (jnÞ0, zn50), and (jnÞ0, znÞ0). These plots are
computed for the coupling strengthc50.7. The results indi-
cate that if the level of noise in the data is small, a nond
ferentiable function is detectable with some accuracy limi
by the noise variance.

In this analysis we assumed that the symbolic seque
representing the driving trajectory is detected correctly.
expect that if the symbolic sequence contains errors then
modified functionh(m) can be severely damaged and the i
provement of function detection can fail. We believe that
use of a noise reduction technique can be very beneficia
correcting of errors in the symbolic sequence.

V. CONCLUSIONS

A simple numerical example and rigorous theoreti
analysis show that, despite complex shapes of nondiffe
tiable synchronization functions, the existence of such
function can be detectable in practical situation. This can
achieved by considering this function not as a function of
current state of driving system, but as a function of the st
in which the driving system has been a few steps ea
Thanks to the contracting properties caused by the diss
tion in the driving system, the nearby trajectories disper
far away from each other in the previous times. This eff
can be used as a ‘‘magnifying glass’’ in the detection
nondifferentiable synchronization function that contains m
tiple wrinkles and cusps. It is shown that, although t
‘‘magnified’’ function in this analysis remains nondifferen
tiable, the amplitude of these wrinkles and cusps gets sm
as the delay increases.

FIG. 8. The dependence of mean squared error of best pol
mial fitting function for the attractor points (xn2m ,yn) on the tra-
jectory lengthm computed for three different n.
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The results presented in this paper are in agreement
the recent study on detection of generalized synchrony m
by He, Zheng, and Stone@27#. Their study is based on a
different technique that involves the analysis of drive a
response trajectories in the embedded phase spaces
takes into accountp preimages for each trajectory point. Th
use of the preimages in this case also acts as a magnif
glass in detecting of the wrinkled synchronization functio

In the example considered in Sec. II, the synchronizat
function depends only on thex(1) variable, which is the co-
ordinate that always represents a stable direction inx. Stable
and unstable directions inx space in this driving system ar
fixed and do not dependent onx. Therefore, the differentia
of this map is a constant matrix. In a more general situat
this is not the case, and the synchronization function m
depend on both stable and unstable coordinates. Neve
less, it is possible to understand~although it is not so simple
to prove! that the dependence on the unstable coordinat
nonessential in the hyperbolic situations. The simplest w
to be convinced is to remember that for hyperbolic attrac
there exists a local Ho¨lder-continuous change of variable
such that in new variables the stable and unstable direct
are along the coordinate lines~planes! and the situation be-
comes very similar to the example considered.

We examined the influence of external noise on the fu
tion improvement. We found that noise in the data acqui
from the response system sets a limit for the accuracy of
function approximation and, as a result, after some criti
value ofm, further increase of delay becomes useless.

To conclude, we would like to emphasize that althou
we apply our study to the theory of chaos synchronizati
the data analysis method and theory developed here ca
useful for other applications. Such applications include p
diction of chaotic dynamical behavior in time and space a
other studies associated with various types of prediction.
use of hybrid, ‘‘continuous-symbolic’’ representation of th
chaotic trajectories enables one to take into account a
tional information about the trajectory in a compact way.

It is clear that, since improvement of the function dete
ability relies on increasing of resolution in the analysis
chaotic attractor in the driving system, each step in the
provement requires a larger number of points to be availa
for the analysis. As a result, detectability of the function c
be limited not only by a noise in the data, but also by t
limited number of data points.
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